Image for Arylamine N-acetyltransferase gene polymorphism
Arylamine N-acetyltransferase gene polymorphism

Related Terms

  • Content available for subscribers only.

Background

  • Arylamine N-acetyltransferase is a protein involved in the metabolism of many different molecules that enter the body. The genes NAT1 and NAT2 provide instructions for making the two main arylamine N-acetyltransferases, called NAT1 and NAT2. Both these proteins metabolize some molecules to make them more or less active within the body. Some of the molecules metabolized by NAT1 or NAT2 include drugs, such as the antibiotic isoniazid, and substances in the environment that may cause cancer, such as cigarette smoke.
  • Metabolism refers to the way in which the human body interacts with drugs, food, and any other ingested substance. Metabolism involves absorption in the digestive tract, processing in the liver and other organs, action of the substance within the cells, and elimination in the urine or stool.
  • Genes provide the instructions for making proteins, which perform metabolic functions in the body. Genes are found inside the nucleus of the cells of all organisms. An individual's genes are contained in a large molecule called DNA (deoxyribonucleic acid), which looks like a twisted ladder. This unique shape is called a double helix. The sides of the double helix are made of alternating sugar and phosphate molecules. The "rungs" of the "ladder" are made of small molecules called bases. These molecules include adenine, thymine, cytosine, and guanine. The pattern of these four molecules in a gene determines which protein is produced.
  • DNA differs slightly from individual to individual. If these differences are present in a gene, they are called alleles or polymorphisms. Differences in alleles may result in genes that code for proteins with more or less activity than others. Differences in parts of the DNA that do not code for proteins may affect whether or not a gene is active. For instance, one person may have a small difference in a part of their DNA that causes a nearby gene to become inactive. This person would therefore not have the protein created by that inactive gene.
  • Further content available for subscribers only.

Methods

  • Content available for subscribers only.

Research

  • Content available for subscribers only.

Implications

  • Content available for subscribers only.

Limitations

  • Content available for subscribers only.

Safety

  • Content available for subscribers only.

Future Research

  • Content available for subscribers only.

Author Information

  • Content available for subscribers only.

References

Natural Standard developed the above evidence-based information based on a thorough systematic review of the available scientific articles. For comprehensive information about alternative and complementary therapies on the professional level, go to www.naturalstandard.com. Selected references are listed below.

  • Content available for subscribers only.
The information in this monograph is intended for informational purposes only, and is meant to help users better understand health concerns. Information is based on review of scientific research data, historical practice patterns, and clinical experience. This information should not be interpreted as specific medical advice. Users should consult with a qualified healthcare provider for specific questions regarding therapies, diagnosis and/or health conditions, prior to making therapeutic decisions.